Selection and Use of Pipettes

Cindy Burt, MS, OTR/L, CPE
UCLA Ergonomics
NECE Las Vegas, November 2005

Pipetting Injuries

- 128 female subjects
- Higher rate than female Swedish state employees in general

MJ Bjorksten et al., 1994

Pipetting Injuries

- 80 subjects
- 55% return rate
- Hand pain
- Dose/response

David & Buckle, 1997

Pipetting Injuries – Hand

- 300 hours = 6 hrs/wk

Bjorksten et al (1994)

Pipetting Injuries – Hand

- 15 subjects
- Male/female
- Six healthcare sites

British Columbia Institute of Technology (2003)
Risk Factors

- Force
- Personal
- Environment
- Posture
- Repetition

Risk Factors:

- National Research Council and Institute of Medicine, 2001

Awkward postures

- Primary factor in repetitive strain injuries
- Increased level of risk with
 - Force
 - Repetition

Risks and Injuries

- Elevated arm
 - Extended reach
 - Neck strain
 - Upper back strain
 - Low back strain
 - Rotator cuff tendinitis
- Lateral epicondylitis
- Radial tunnel
- Cubital tunnel

Risks and Injuries

- Elevated arm
 - Forearm pronation
 - Elbow flexion
 - Wrist extension
 - Radial deviation
 - Tight grip
 - Lateral epicondylitis
 - Radial tunnel
 - Cubital tunnel

Risks and Injuries

- Tight grip
 - Wrist ulnar deviation
 - Thumb strain
 - DeQuervain’s tendinitis
 - Ulnar nerve at wrist

Risks and Injuries

- Tight grip
 - Wrist ulnar deviation
 - Thumb strain
 - DeQuervain’s tendinitis
 - Ulnar nerve at wrist
Risks and Injuries
- Tight grip
- Repetitive wrist deviation, extension and flexion
- Carpal tunnel syndrome

Risks and Injuries
- Tight grip
- Repetitive finger extension and flexion
- Trigger finger
- Radial tunnel
- Extensor tendinitis
- Flexor tendinitis

Awkward Postures and Strength
- Leaning on elbow
 - Cubital tunnel

Awkward Postures and Strength
- Grip strength is related to wrist position
 - Neutral = 100% hand strength
 - 25º = 80% strength
 - 45º = 80% strength

Awkward Postures and Strength
- Force is related to elbow position
 - 45º = 50% strength
 - 90-120º = 100% strength
 - 160º = 85% strength
Posture and Strength
- Non-neutral postures increase:
 - Physical effort
 - Muscle fatigue
 - Exposure to risk
 - Musculoskeletal injuries

Maximum Force Capacity

<table>
<thead>
<tr>
<th>Thumb-pinching activities</th>
<th>% of Maximum Strength Capacity</th>
<th>Force (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Male</td>
</tr>
<tr>
<td>Maximum strength</td>
<td>100%</td>
<td>10 kg</td>
</tr>
<tr>
<td>Dynamic Peak Force</td>
<td>30%</td>
<td>3 kg</td>
</tr>
</tbody>
</table>

Traditional Pipetting Forces

<table>
<thead>
<tr>
<th>Thumb force to operate plunger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Should not exceed .5 kg (18 ounces)</td>
</tr>
<tr>
<td>continuous loading to accommodate weakest women</td>
</tr>
</tbody>
</table>

Fredriksson, K., (1995)
Posture & Force: High risk issues

- Repetitive wrist flexion/extension and forearm rotation increases fluid pressure in carpal tunnel
- Increase of 40-50mmHg for 1 hour can affect median nerve
- 30mmHg pressure over 4 hours can affect median nerve
- Full supination can increase pressures 285%

What does this mean?

- When pipetting:
 - Limit forearm rotation and wrist flexion
 - Maintain 45 degree forearm pronation

Posture & Force: High risk issues

- High precision tasks
 - Increased static muscle activity (10.6% to 13.3%)
 Close to endurance limits recommended by Bjorksten and Jonsson 1977
 - Increased thumb motion control
 - Increased potential for fatigue
 - Potential increased risk for tendon related diseases (i.e. deQuervain’s disease)

Force: High risk issues

- High viscosity fluids
 - Requires increased thumb force (11%)
 - Increases mean cycle time

Force: High risk issues

- Volume adjustment
 - Highest level of muscle activity during pipetting
 - Small dial diameter
 - Limited contact friction between dial and fingers
 - Force required to turn dial

Force: High risk issues

- Volume adjustment
 - Revolutions to turn volume dial:
 - Eppendorf Research - 20
 - Rainin Pipet-Lite - 20
 - Firepipette - 20
 - Ovation - 4 primary stops with push button

Pipette Selection

- Application-specific design
- Cost (instrument and tips)
- Accuracy and reproducibility
- Durability/maintenance
- Ergonomics

Pipette Selection

- Volume ranges
 - .5 – 10.0 µl
 - 10 – 100 µl
 - 20 – 200 µl
 - 100 – 1000 µl
 - 500 – 5000 µl

Pipette Selection

- Volume range
 - Mid to high end of recommended volumes (most accurate)
 - Pipetting volume = 50 µl
 - 10 – 100 µl?
 - 20 – 200 µl?

Pipette Selection

- Cost
 - Instrument
 - Replacement parts/repair
 - Calibration
 - Batteries
 - Tips

Pipette Selection

- Durability
 - Materials
 - Plastic versus metal
 - Weight trade-off
 - Down-time for repair
Pipette Selection

- Specialty applications
 - Biohazardous material exposure
 - Autoclavable?
 - Chemical compatibilities
 - Exposure to UV light

- Manual Pipette
 - 5 step process
 - Depress
 - Hold
 - Aspirate
 - Dispense
 - Blowout

Definitions

- Aspirate – to draw up the sample
- Dispense – to deliver the sample
- Blow-out – to empty the tip completely

- Magnetic Assist Manual Pipette
 - Magnetic latch locks at zero position
 - No blowout spring
 - Trigger releases latch and tip fills at set aspiration speed
 - Reduces pipetting from 5 steps to 2

- Magnetic Assist
 - Traditional plunger force = 3-4 kg
 - Pipet-Lite = 1.7 kg
 - 70% reduced force

- Latch-Mode Pipette
 - Magnetic latch locks at zero position
 - No blowout spring
 - Trigger releases latch and tip fills at set aspiration speed
 - Reduces pipetting from 5 steps to 2

- Magnetic Latch
 - Rainin Pipet-Lite™
 - Magnetic-assist pipette

- Magnetic Assist
 - Traditional plunger force = 3-4 kg
 - Pipet-Lite = 1.7 kg
 - 70% reduced force

- Latch-Mode Pipette
 - Magnetic latch locks at zero position
 - No blowout spring
 - Trigger releases latch and tip fills at set aspiration speed
 - Reduces pipetting from 5 steps to 2
Pipette Selection

- Pipet-plus Latch Mode Pipette
 - Traditional plunger force = 3-4 kg
 - Pipet-Plus = 1.1 kg
 - 80% reduced force

- Latch-Mode Pipette
 - Unexpected increased thumb muscle activity
 - Users extended thumb MCP joint after depressing plunger
 - Increased static muscle load
 - Solutions
 - Thumbrest
 - User training re: posture

Pipette Selection

- Electronic Pipettes
 - Eliminates forceful actions
 - Varied modes of operation (pipette, multi-dispense)
 - Can be heavy
 - Accuracy varies
 - Expensive

Pipette Selection

- Multichannel Pipettes
 - Manual and electronic models
 - Multi-shafts (6-12)
 - Faster
 - Decrease repetition

Pipette Selection

- Multichannel Pipettes
 - High plunger forces
 - High tip loading force
 - Potential uneven tip sealing causing inconsistent sample loading
 - Heavy
 - Expensive

Pipette Selection

- Specialty Pipettes
 - Powerpette
 - Digital Powermate
 - Finnpipette Biomate
 - Eppendorf Easypet
 - Variety of controls
 - Ambidextrous use

Pipette Plunger Forces

- Epp Ref
- Hamil
- Ovation
- Biohit
- Oxford
- Epp
- Res
- Gilson

Pipette Plunger Forces

- Rainin
- Pipet
- Plus Pipet Lite
- Finn Dig
- Biohit Manual Multi

Pipette Tip Ejection Forces

- Ovation
- Rainin LTS
- Hamil
- Biohit
- Fnn Pipette
- Biohit Multi
- Eppen Ref

Pipette Tip Ejection Forces

- Pipet Lite
- Pipet Plus
- Finn Dig
- Rainin Elec Multi

Tip Ejection Forces

- Tip ejection forces are significant
- Studies vary in reported force
 - Hamilton versus Rainin
Tip Ejection Forces
- Rainin LTS tips reduce tip ejection force to 0.6 kg (reported by Rainin)

Rainin LTS Tip
- Heavy ejection force
- Light ejection force
- Traditional: Conical shaft and conical thick-walled tip
- LTS: Cylindrical shaft and cylindrical thin-walled tip

Pipettes
- Ovation BioNatural
 - Promotes forearm pronation
 - Promotes 10° wrist flexion
 - Promotes relaxed hand posture
 - Stand alone - no racks
 - Volume adjustment pad

Posture: Forearm
- Figure 3: Forearm rotation during aspiration & dispensing

NIOSH/Duke Pipette Study
- Compared traditional pipettes with Ovation
- N = 61
- Pre-intervention discomfort survey:
 - 100% reported discomfort
 - 56% neck
 - 51% shoulder
 - 26% wrist
 - 16% thumb

NIOSH/Duke Pipette Study
- No significant difference between control and intervention group
- Users preferred Ovation for comfort, accuracy, general use
- Cap opener developed to address productivity issue
NIOSH/Duke Pipette Study
- Measured MSD physical risk factors associated with pipetting
- N = 11 female and 1 male
- Force and goniometry measures
- Ovation, Oxford Benchmate II, and Eppendorf Reference Pipettes

Lu and Sudhakaran, 2005

NIOSH/Duke Pipette Study
- Ovation significantly reduced:
 - Thumb force
 - Total finger force
 - Wrist deviation
 - Shoulder elevation
 - Wrist flexion/extension during aspiration

Lu and Sudhakaran, 2005

NIOSH/Duke Pipette Study
- Ovation increased
 - Forearm rotation
 - Rotation less of risk factor than wrist deviation, flexion and extension

Lu and Sudhakaran, 2005

Recommendations
- Work design changes
- Selection of appropriate pipettes
- Administrative controls
- Work practice controls
- Training

Arndt, R. (2001)

Recommendations
- Administrative controls
 - Limit continuous pipetting to 20 minutes
 - Take 3-5 minute breaks every 20-30 minutes
 - Complete upper extremity stretches

Arndt, R. (2001)
Recommendations

- **Work practices**
 - Keep pipettes clean
 - Use electronic pipettes repetitively dispensing or filling multi-well plates
 - Match pipette with task

 Arndt, R. (2001)

Recommendations

- **Behavior/habits**
 - Take regular breaks
 - Use minimal force when applying tips
 - Keep samples and instruments within easy reach
 - Don’t press harder than necessary on the plunger
 - Use variety of grips
 - Try alternating hands

Arndt, R. (2001)

Recommendations

- **Behavior/habits**
 - Keep arms close to sides
 - Keep wrist straight
 - Avoid resting elbows on hard surfaces
 - Avoid arm/elbow contact with table edges

 Arndt, R. (2001)

Recommendations

- **Behavior/habits**
 - Adjust chair and work surface to minimize bending of neck and torso
 - Adjust stools or chairs to ensure lower back and thigh support
 - Adjust and use foot supports as necessary (stool rather than ring)
 - Alternate sitting and standing

 Arndt, R. (2001)

Recommendations

- **Behavior/habits**
 - Use proper pipetting technique
 - Immersion depth and angle
 - Cadence
 - Tip position in the receiving vessel
 - Force
 - Posture

Costello, K.J., (2005)
Recommendations

- Pipette design
 - Finger controls in lieu of thumb controls
 - Separate plunger/tip ejection buttons?
 - Location critical
 - Avoid sharp edges on handles and triggers
 - Avoid finger flutes
 - Diameter between 1 – 1.5 inches

Arndt, R. (2001)

- Pipette design
 - Consider trigger/plunger design and location
 - Multi versus one-finger controls
 - Electronic controls
 - Options to reduce grips (soft grips, finger hooks, contoured surfaces)

BrandTech Handistep
Matrix Impact electronic pipettes
Eppendorf EasyPet

Arndt, R. (2001)

- Pipette design
 - Limit length – shorter is better
 - Limit weight – lighter is better
 - Eliminate static loading force and duration
 - Reduce plunger force
 - Reduce repetition (electronic pipettes for high repetition tasks)
 - Ambidextrous design

Arndt, R. (2001)

- Introduce automation with high volume pipetting
- Reduce button resistance
- Provide adjustable size handles to accommodate different hand sizes

- Consider specialty pipettes
 - Latch-hook
 - Magnetic
 - Multi-channel
 - Electronic

Arndt, R. (2001)
Recommendations

- Consider tip ejection forces
 - Design of tip and seal
 - Design of tip ejector
 - Thumb versus finger operated
 - Power versus pinch grip
 - Length of tip

- Train users
 - Design changes
 - Reduce blowout force
 - Volume adjustment dial
 - Increase diameter
 - Reduce rotation force
 - Modify plunger position to reduce awkward thumb postures
 - Add surfaces to rest thumb

- Use proper technique
 - Hold pipette in loose, relaxed grip
 - Use hook to passively support pipette
 - Apply tips with gentle force
 - Select short pipettes, tips, tubes and canisters
 - Adjust height and tilt holders and containers
 - Keep work close
 - Consider arm supports

- Provide ergonomic pipetting workstations
 - Automated height adjustment mechanism
 - Table cutout to reduce reach
 - Floating arm supports
 - Plinths or platforms for variable height test tubes/pipettes
 - Labeled reach zones

References

Recommendations

<table>
<thead>
<tr>
<th>Provide ergonomic pipetting workstations</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Open space under work benches</td>
</tr>
<tr>
<td>- Footrails</td>
</tr>
<tr>
<td>- Portable storage cabinets</td>
</tr>
<tr>
<td>- Ergo mats for standing stations</td>
</tr>
<tr>
<td>- Sufficient storage areas</td>
</tr>
<tr>
<td>- Proper task lighting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Provide ergonomic fume hoods</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Adjustable height</td>
</tr>
<tr>
<td>- Clearance for thighs/legs</td>
</tr>
<tr>
<td>- Horizontal and vertical sashes</td>
</tr>
<tr>
<td>- Angled sashes</td>
</tr>
<tr>
<td>- Rounded or padded edges</td>
</tr>
<tr>
<td>- Turntables</td>
</tr>
<tr>
<td>- Appropriate pipettes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Don’t forget other tasks associated with pipetting</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Set-up</td>
</tr>
<tr>
<td>- Labeling</td>
</tr>
<tr>
<td>- Lid/cap removal</td>
</tr>
<tr>
<td>- Vortex mixing</td>
</tr>
<tr>
<td>- Clean-up</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consider other tasks performed at pipetting workstation</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Microscope</td>
</tr>
<tr>
<td>- Computer</td>
</tr>
<tr>
<td>- Administrative</td>
</tr>
</tbody>
</table>

References

References

Useful Links

- National Institute of Health
 http://www.nih.gov/od/ors/ds/ergonomics/lab1.html
- Rainin ergonomics
 http://www.rainin.com/fit_ergopaper.asp
- UC Berkeley Laboratory Ergonomics
 http://www.ohs.berkeley.edu/facstaff/ergonomics/erl/pipetting.shtml
- Appendix on Ergonomic Pipettes
 http://www.ohs.berkeley.edu/facstaff/ergonomics/lab/ergopipettes.shtml
- University of Minnesota
 http://www.dehs.umn.edu/ergo/lab/d/pipetting

Useful Links

- UCLA Ergonomics
 http://ergonomics.ucla.edu/lab.html
- University of Michigan
 http://www.oseh.umich.edu/Lab_Ergonomics_Brochure.pdf
- Humantech
 http://www.humantech.com/Level3/publications_resources/applied_lab.html
 http://www.llnl.gov/ergo/lab_rats.html

Useful Links

- National Institute of Environment and Health Sciences
 http://www.niehs.nih.gov/odhsb/ergoguid/home.html
- UC San Diego
 http://www-ehs.ucsd.edu/ergo/fisher.htm
- Lawrence Livermore National Laboratories
 http://www.llnl.gov/ergo/lab_rats.html
- Center for Disease Control
 http://www.cdc.gov/od/ohs/Ergonomics/labergo.htm
- Stanford University
 http://www2.umdnj.edu/eohssweb/aiha/technical/ergonomics.htm

Useful Links

- UCLA Ergonomics
 http://ergonomics.ucla.edu/lab.html
- University of Michigan
 http://www.oseh.umich.edu/Lab_Ergonomics_Brochure.pdf
- Humantech
 http://www.humantech.com/Level3/publications_resources/applied_lab.html
 http://www.llnl.gov/ergo/lab_rats.html

Useful Links

- UCLA Ergonomics
 http://ergonomics.ucla.edu/lab.html
- University of Michigan
 http://www.oseh.umich.edu/Lab_Ergonomics_Brochure.pdf
- Humantech
 http://www.humantech.com/Level3/publications_resources/applied_lab.html
 http://www.llnl.gov/ergo/lab_rats.html

Pipette Manufacturers

- Hamilton Company
- Rainin
 http://www.rainin-global.com/
- 3M
 http://www.3m.com/microbiology/home/products/pipettor/ep_ergo.html
- Matrix Technology
 http://www.matixtechcorp.com/home.html
Pipette Manufacturers

- Brand Tech
 http://www.brandtech.com/
- Eppendorf
 www.eppendorf.com/
- Finnpipette
 http://www.labsystems.fi/
- Ovation
 http://www.vistalab.com/products.asp